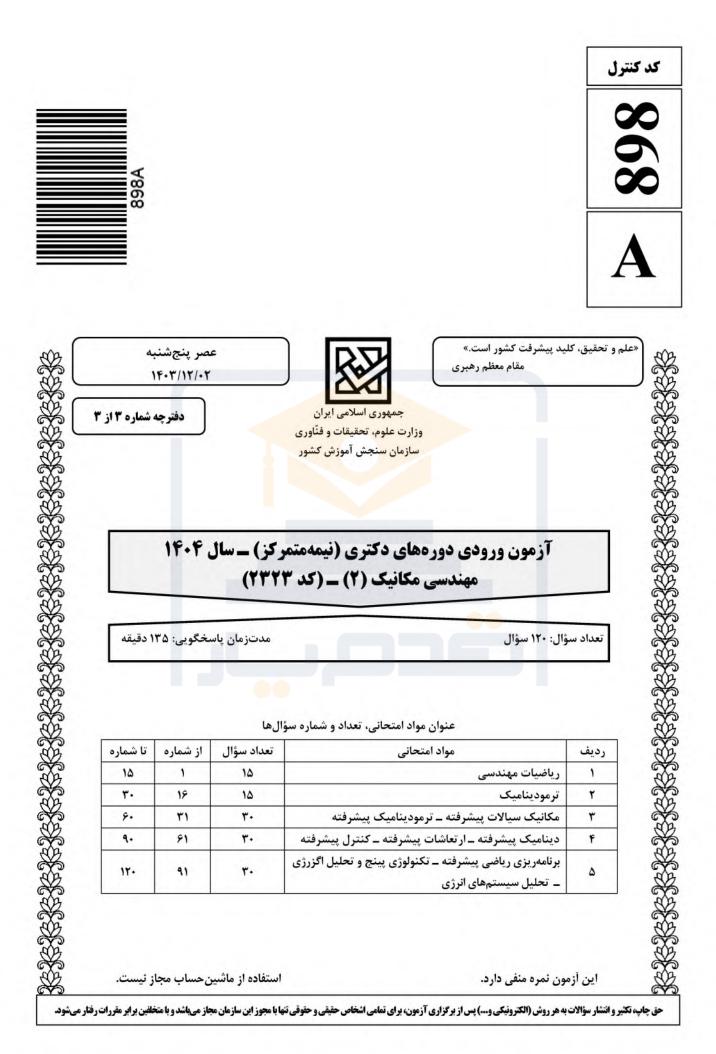


قدم به قدم، همراه دانشجو... WWW.GhadamYar.Com جامع ترین و بهروزترین پرتال آزمونهای شغلی کشور (پرتال دانش) با ارائه خدمات رایگان، آموزشی، راهنمای آزمونهای شغلی و... برای دانشجویان

۱)راهنمای آزمونهای حقوقی به همراه دفترچه سوالات سالهای گذشته (رایگان) شامل آزمونهای وکالت (اسکودا و مشاوران قوه) ، قضاوت ، اختبار، سردفتری، دفتریاری و ...
۲)راهنمای آزمونهای کارشناسان رسمی دادگستری به همراه سوالات سالهای گذشته (رایگان)
۳)راهنمای آزمونهای نظام مهندسی به همراه دفترچه سوالات سالهای گذشته (رایگان)
۹) ارائه جزوات و منابع رایگان برای آمادگی در آزمونهای شغلی
۵) آخرین اخبار آزمونهای شغلی، از خبرگزاری های پربازدید
۶) معرفی روشهای مقاله و پایاننامه نویسی و ارائه پکیچهای آموزشی مربوطه
۷) ارائه سوالات کنکور مقاطع مختلف سالهای گذشته، همراه پاسخ، به صورت رایگان

.... (9



WWW.PortalDanesh.com → ۹۱۲ + ۹ + ۳ ۸+1

WWW.PortaleDanesh.com

باما همراه باشید...

WWW.GhadamYar.Ir

مهندسی مکانیک (۲) _ (کد ۲۳۲۳)

898A

صفحه ۲

* داوطلب گرامی، عدم درج مشخصات و امضا در مندرجات کادر زیر، بهمنزله عدم حضور شما در جلسه آزمون است.

اینجانب با شماره داوطلبی با آگاهی کامل، یکسانبودن شماره صندلی خود با شماره داوطلبی مندرج در بالای کارت ورود به جلسه، بالای پاسخنامه و دفترچه سؤالات، نوع و کدکنترل درجشده بر روی جلد دفترچه سؤالات و پایین پاسخنامهام را تأیید مینمایم.

امضا:

رياضيات مهندسى:

- فرض کنید (۲nx) میدار
$$\sum_{n=1}^{\infty} a_n^r$$
 مقدار $\sin x = \frac{1}{r} a_0 + \sum_{n=1}^{\infty} a_n \cos(r_n x)$
 $\int - \frac{\lambda}{\pi^r} (r)$
 $\int - \frac{\pi}{\pi^r} (r)$
 $\int - \frac{\pi}{\pi^r} (r)$
 $\int + \frac{\lambda}{\pi^r} (r)$
 $\int + \frac{\lambda}{\pi^r}$

-۴ تبدیل فوریه جواب معادله دیفرانسیل
$$\frac{-1}{t^{r}+1}$$
 کدام است؟
 $y(w) = (w^{r}+1)e^{-w}$ (۱
 $y(w) = w^{r}e^{-w}$ (۲
 $y(w) = \frac{e^{-w}}{w^{r}}$ (۳
 $y(w) = \frac{e^{-w}}{w^{r}}$ (۴

معادل معادل (نفکیک متغیرها) برای حل معادل u(x, y) = u(x, y) فرض کنید u(x, y) = u(x, y) جاصل از روش ضربی (تفکیک متغیرها) برای حل معادل $u(\circ, y) = u(\pi, y) = \circ$, $\circ < x < \pi, y > \circ$ دیفرانسیل جزیی $u(\circ, y) = u(\pi, y) = \circ$, $\circ < x < \pi, y > \circ$ با شرایط مرزی $u(\circ, y) = u(\pi, y) = \circ$ کدام مورد درست است?

$$u(x, y) = \sum_{n=1}^{\infty} \frac{k_n \sin(nx)}{y^n \sqrt{y}} (1)$$
$$u(x, y) = \sum_{n=1}^{\infty} \frac{k_n \sin(nx)}{\sqrt{y^{n'-1}}} (1)$$
$$u(x, y) = \sum_{n=1}^{\infty} \frac{k_n \sin(nx)}{\sqrt{y^{n'+1}}} (1)$$
$$u(x, y) = \sum_{n=1}^{\infty} \frac{k_n \sin(nx)}{\sqrt{y^{n'+1}}} (1)$$

ہ پتانسیل الکترواستاتیک بر روی نیمدایرہ ہای بالایی و پایینی یک دایرہ به مرکز مبدأ مختصات و شعاع واحد، به ترتیب، • و ۱ و به ازای $u(r, \theta) = \sum_{n=1}^{\infty} r^n (A_n \cos(n\theta) + B_n \sin(n\theta))$ است.

کدام مورد، درست است؟

$$A_{n} = \circ \ _{9} \ B_{n} = \frac{Y((-1)^{n} - 1)}{n\pi} (1)$$

$$A_{n} = \circ \ _{9} \ B_{n} = \frac{(-1)^{n} - 1}{n\pi} (1)$$

$$A_{n} = \circ \ _{9} \ B_{n} = \frac{(-1)^{n} - 1}{n\pi} (1)$$

$$A_{n} = 1 \ _{9} \ B_{n} = \frac{Y(-(-1)^{n})}{n\pi} (1)$$

$$\begin{aligned} -11 & \text{ Jite } (z = 0, \text{ Jite } z = 0, \text{ Jite } z = 0, \text{ Jite } (z) = e^{z} \sin(\frac{1}{z}) & \text{ Jite } (z) \\ & \sum_{n=0}^{\infty} \frac{1}{((\tau n + 1))^{\gamma}} (z) \\ & \sum_{n=0}^{\infty} \frac{1}{((\tau n + 1))^{\gamma}} (z) \\ & \sum_{n=0}^{\infty} \frac{\tau n}{((\tau n + 1))^{\gamma}} (z) \\ & \sum_{n=0}^{\infty} \frac{\tau n}{((\tau n + 1))^{\gamma}} (z) \\ & \sum_{n=0}^{\infty} \frac{\tau n}{((\tau n + 1))^{\gamma}} (z) \\ & = \frac{1}{\pi} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\pi} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\pi} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \frac{1}{\pi} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \frac{1}{\pi} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \frac{1}{\pi} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \frac{1}{\pi} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \frac{1}{\pi} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \frac{1}{\pi} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \frac{1}{\pi} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \frac{1}{\pi} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \frac{1}{\pi} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \frac{1}{\pi} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos \theta) \cos(n\theta) d\theta (z) \\ & \frac{1}{\tau} \int_{0}^{\pi} \sin(\tau \cos$$

(w = u + iv و z = x + iy) کدام است؟ (w = $\frac{z+1}{Yiz}$ توسط نگاشت $\frac{z+1}{Yiz}$ ، کدام است؟ (z = x + iy) $v = -\frac{1}{4}$ ($v = -\frac{1}{4}$

ترموديناميك:

- ۱۶ کدام مورد درست است؟
 ۱) آنتالپی گاز کامل و آنتالپی سیالات تراکمناپذیر، مستقل از فشار است.
 ۲) آنتالپی گاز کامل و آنتروپی سیالات تراکمناپذیر، فقط و فقط تابع دما است.
 ۳) انرژی داخلی و آنتروپی گازهای کامل و سیالات تراکمناپذیر، مستقل از فشار است.
 ۴) برای سیالات تراکمناپذیر انرژی داخلی و برای گازهای کامل انرژی داخلی، آنتالپی و آنتروپی مستقل از فشار است.
- ۱۷ دو مخزن صلب و کاملاً عایق با حجمهای مساوی توسط یک شیر اتصال به هم وصل هستند. در مخزن اول، یک گاز کامل در دمخزن صلب و کاملاً عایق با حجمهای مساوی توسط یک شیر اتصال به هم وصل هستند. در مخزن اول، یک گاز کامل در دمای ۲۰ هم وصل مستند. در مخزن اول، یک گاز کامل در دمای ۲۰ هم وصل مستند. در مخزن اول، یک گاز کامل در دمای کاه در دمای ۲۰ هم وصل مستند. در مخزن اول، یک گاز کامل در دمای ۲۰ هم وصل هستند. در مخزن اول، یک گاز کامل در محزن صلب و کاملاً عایق با حجمهای مساوی توسط یک شیر اتصال به محمول مستند. در مخزن اول، یک گاز کامل در دمای کامل داریم. اگر شیر اتصال بین دو مخزن اول، یک گاز کامل در دمای ۲۰ هم وصل هستند. در مخزن اول، یک گاز کامل در دمای ۲۰ هم وصل هم وصل هستند. در مخزن اول، یک گاز کامل در دمای ۳۰ و قدار ۵ بار و خود دارد. در مخزن در مخزن دوم، خلاً کامل داریم. اگر شیر اتصال بین دو مخزن اول، یک گاز کامل تو دمای کامل در دمای کامل در می ای در محزن درا باز کنیم تا به تعادل کامل برسیم، به تر تیب، فشار نهایی (برحسب بار) و دمای نهایی (برحسب کلوین) چقدر است؟
 - ιι» و ۱/۵ (۱
 - ۲) ۲/۵ و ۳۰۰
 - ۳۲ و ۳۲۰

۴) چون جنس گاز معلوم نیست، نمی توان اظهارنظر کرد.

- ۱۸- در یک فرایند بازگشتپذیر، فشار ثابت برای یک سیستم (بسته<mark>) یا ج</mark>رم کنترل، مقدار تبادل گرمایی با محیط برابر کدام است؟
 - ۱) مقدار تغییرات انرژی آزاد گیبس
 ۲) مقدار تغییرات انرژی داخلی
 ۳) مقدار تغییرات آنتالپی
- ۱۹ جریانی به شدت ۵ و آنتالپی مخصوص ۳ به صورت کاملاً یکنواخت (پایدار یا SSSF) وارد یک حجم کنترل شده و با جریان دیگری با شدت ۳ و آنتالپی مخصوص ۱۰ مخلوط می شود. جریان خروجی دارای آنتالپی مخصوص ۲۰ می باشد. درون حجم کنترل یک ممزن با توان مصرفی ۱۰۰ کار می کند. شدت تبادل گرما با حجم کنترل چقدر است؟ (واحدها همه هم آهنگ و اختیاری است.)
 - 10 (1
 - YA (1
 - 110 (1
 - TVD (4

- ۲۰ برای گازی معادله حالت P(v-b) = RT صحیح است که در آن b عدد ثابتی است. در اینصورت که آن در دمای ثابت کدام است؟
 - $\frac{R \ln \frac{V_{\gamma}}{V_{\gamma}}}{V_{\gamma}} (\gamma) \qquad R \ln \frac{P_{\gamma}}{P_{\gamma}} (\gamma) \\ R \ln \frac{P_{\gamma}}{P_{\gamma}} (\gamma) \qquad R \ln \frac{V_{\gamma}}{V_{\gamma}} (\gamma)$
- معادله حالت گازی از رابطه p(v-b) = RT پیروی میکند که در آن b عدد ثابتی است. برای یک تحول دما ثابت (ایزوترمال)، ΔΗ برابر کدام است؟

$$bRT(\frac{1}{v_1} - \frac{1}{v_r})$$
 (۲ $bRT(\frac{1}{v_r} - \frac{1}{v_1})$ (1)
مغر (۴ $b(P_r - P_1)$ (۳

۲۲ – یک مخلوط گازی در دمای T و فشار P دارای ضریب تراکمپذیری (z) برابر √۹ است. اگر برای این گاز معادله ویریال به شکل z=1+B'P را صادق فرض کنیم، بهطور تقریبی ضریب فوگاسیته آن چقدر است؟

$$Exp(x) = 1 + x + \frac{x^{\gamma}}{\gamma!} + \cdots$$

- ۰/۲۲ (۲ °/۲۶ (۱
- ۴) با این اطلاعات قابل محاسبه نیست.
- ۲۳- تابع آنتروپی باقیمانده (پسماند) یا $s = s^{ig} s = s' s = s^{ig}$ برای یک گاز واقعی برابر کدام است?

- یک سیلندر و پیستون بدون اصطکاک و غیرعایقشده حاوی ۵/۵ کیلوگرم مایع اشباع با کیفیت ۱۰ درصد است. کل دستگاه در دمای ^{0}C قرار دارد و بر روی پیستون به اندازه کافی وزنه گذاشته ایم که فشار وارد از طرف پیستون بر مایع دقیقاً برابر فشار اشباع مایع در این درجه حرارت است. اگر یک وزنه بسیار کوچک به وزنههای روی پیستون اضافه کنیم و به مقدار زیادی صبر کنیم، این سیلندر و پیستون به طور تقریبی چه مقدار گرما (برحسب کیلوژول) با محیط مبادله خواهد کرد؟ (داده ها برحسب کیلوژول بر کیلوگرم عبارتند از: ۱۵۰۰ $h_{\rm g} = 1000$, $h_{\rm f} = 1000$, $h_{\rm f} = 1000$
 - 40 (1

0,18 ("

- ۵۵ (۲
- ۶۵ (۳

۲۵ - کدام رابطه، تعریف دقیقی برای دمای بویل است؟

$$\lim_{P \to \circ} (\frac{\partial z}{\partial T})_{P} = \circ (\Upsilon) \qquad \qquad \lim_{P \to \circ} (\frac{\partial v}{\partial T})_{P} = \circ (\Upsilon) \\ \lim_{P \to \circ} (\frac{\partial z}{\partial P})_{T} = \circ (\Upsilon) \qquad \qquad \lim_{P \to \circ} (\frac{\partial v}{\partial P})_{T} = \circ (\Upsilon)$$

- ۲۶- برای یک واحد جرم ماده تکفازی، تابع $\left(\frac{\partial s}{\partial n}
 ight)$ برابر کدام است?
- $\begin{array}{ll} -\frac{c_{P}}{T} (\frac{\partial T}{\partial P})_{s} (\Upsilon & -\frac{c_{v}}{T} (\frac{\partial T}{\partial P})_{s} (\Upsilon \\ \frac{c_{v}}{T} (\frac{\partial T}{\partial P})_{H} (\Upsilon & -\frac{c_{P}}{T} (\frac{\partial T}{\partial P})_{H} (\Upsilon \end{array}$
- ۲۷ اگر یک جسم خالص فرضی دارای سه آلوتروپی باشد، کدام مورد برای آن درست است؟ ۱) تعداد نقاط سهگانه آن برابر ۱۰ است. ۳) یک نقطه پنجگانه دارد.
- ۲۸ مخزن صلبی حاوی ۱۰۰۰ کیلوگرم مایع و بخار اشباع خالص با کیفیت ۱۰ درصد و فشار یک بار میباشد. در بالای مخزن، شیر اطمینانی وجود دارد تا فشار ۴MPa کاملاً بسته میماند. به این مخزن گرما میدهیم، درست تا لحظهای که شیر متصل به مخزن باز میشود، چند مگاژول به مخزن گرما دادهایم؟

(داده ها برحسب کیلوژول بر کیلوگرم: در حالت <mark>اولیه: ۵۰۰ u_g = ۲۵۰۰ , u_f = ۴۰۰ , در حالت ثانویه: ۱۰۰۰ (داده ها برحسب کیلوژول بر کیلوگرم: در حالت اولیه: ۱۰۰۰ م</mark>

- ۳۹ (۱
- m90 (r
- 4,9 ("
- 8900 (4
- ۲۹ مخزن صلب غیرعایقی حاوی هلیوم در دمای محیط ۲۰۵۳ و فشار ۲MPa است. از این مخزن هلیوم، برای پرکردن یک بالن کروی به حجم ۴۰۵۳ استفاده میکنیم. این بالن در ابتدا به صورت مسطح بوده و بر روی زمین خوابیده است. شیر رابط بین مخزن و بالن را کمی باز میکنیم و صبر میکنیم تا خروج هلیوم از مخزن به بالن به اتمام برسد و بالن به شیر رابط مین مخزن و بالن را کمی باز میکنیم و صبر میکنیم تا خروج هلیوم از مخزن به بالن به اتمام برسد و بالن به شکل کروی در آید. هلیوم سیستم و گاز کامل فرض می شود. بالن نیز مثل مخزن غیرعایق است. فشار هوا یک بار میباشد. فرض می شود بالن نیز مثل مخزن غیرعایق است. فشار هوا یک بار میباشد. فرض می کروی در آید. هلیوم سیستم و گاز کامل فرض می شود. بالن نیز مثل مخزن غیرعایق است. فشار هوا یک بار میباشد. ان محرض می کنیم کروی در آید. هلیوم سیستم و گاز کامل فرض می شود. بالن نیز مثل مخزن غیرعایق است. فشار هوا یک بار میباشد. فرض می کنیم می شود می می می مخزن غیرعایق است. فشار هوا یک بار میباشد.
 - ۱۹۱۰ و ۱۹۱۰
 ۲۲) ۵۰۰۰ و ۵۰۲۵
 ۳) ۵۰۰۰ و ۵۰۱۵
 ۲۱۰۵ و ۲۱۰۵
- می تغییر $\mathbf{B} = \mathbf{b} \frac{\alpha}{\mathbf{T}^{\mathsf{T}}}$ مریب ویریال مرتبه دوم (B) یک گاز از رابطه $\mathbf{B} = \mathbf{b} \frac{\alpha}{\mathbf{T}^{\mathsf{T}}}$ که در آن \mathbf{a} و \mathbf{b} ثابت هستند، بهدست می آید. تغییر آنتالپی واحد جرم این گاز، در دمای ثابت T، زمانی که فشار از یک فشار خیلی خیلی کم تا فشار نهایی π تغییر کند، کدام است؟
 - $-\mathbf{r}\alpha \frac{\pi}{\mathbf{T}^{\mathbf{r}}} (\mathbf{r}) \qquad \qquad \mathbf{b}\pi \frac{\mathbf{r}\alpha\pi}{\mathbf{T}^{\mathbf{r}}} (\mathbf{r}) \\ \mathbf{b}\pi (\mathbf{r}) \qquad \qquad -\mathbf{r}\alpha \frac{\pi}{\mathbf{T}^{\mathbf{r}}} (\mathbf{r})$

مهندسی مکانیک (۲) _ (کد ۲۳۲۳)

898A

صفحه ۹

مکانیک سیالات پیشرفته ـ ترمودینامیک پیشرفته:

۳۱- در المان سیال، اندازهٔ سرعتها داده شده است. آهنگ زمانی تغییر زاویه این المان سیال کدام مورد میباشد؟ $U_{\circ} = \circ$, $U_{A} = \Upsilon$, $U_{B} = \Upsilon$, $U_{C} = U_{B}$ $V_{\circ} = \circ$, $V_{A} = \circ$, $V_{B} = r$, $V_{C} = V_{B}$ $\frac{\pi}{\delta}$ (1 y4 A $\frac{\Delta}{\delta}$ (7 δ $\frac{r}{\delta}$ (r δ $\frac{1}{\delta}$ (* ۳۲- در تقریب بوزینسک (فرض بوزینسک)، چگالی در کدام جمله (ها) را بهترتیب، ثابت و در کدام جمله (هـا) متغیر درنظر می گیریم؟ ۲) مربوط به شتاب ثقل – ناپایایی جابهجا ۲) جابه جایی – مربوط به شتاب ثقل و نایایایی <mark>۴) ناپایایی</mark> و <mark>جا</mark>بهجایی ـ مربوط به شتاب ثقل ۳) ناپایایی ـ جابهجایی و مربوط به شتاب ث<mark>قل</mark> در دوران جسم جامد (صلب) سیال، کدام مورد درست است؟ - "" سطوح فشار ثابت بهشكل هذلولي است. ۲) تنشهای لزج غیرصفر است و معادلات اولر لزج به کار می رود. ۳) تنشهای لزج صفر است و معادلات اولر غیرلزج به کار می رود. ۴) رابطه برنولی برای نقاط روی خطوط جریان مختلف ثابت است. ۳۴- برای حل انتگرالی جریان در لایه مرزی بر روی صفحه تخت با گرادیان فشار $rac{\partial \mathbf{p}}{\partial \mathbf{x}}$ ، پروفیل مرتبه سومی (درجه ۳) حدس زده شده است. کدام مورد، پروفیل صحیح جریان را نشان میدهد؟ $\frac{\mathbf{u}}{\mathbf{u}_{\infty}} = \left(\frac{\mathbf{v}}{\mathbf{r}} - \frac{\partial \mathbf{p}}{\partial \mathbf{x}} \frac{\delta^{\mathsf{r}}}{\mathbf{f} \mathbf{u}_{\infty} \mathbf{v}}\right) \left(\frac{\mathbf{y}}{\delta}\right) + \left(\frac{\partial \mathbf{p}}{\partial \mathbf{x}} \frac{\delta^{\mathsf{r}}}{\mathbf{f} \mathbf{u}_{\infty} \mathbf{v}}\right) \left(\frac{\mathbf{y}}{\delta}\right)^{\mathsf{r}} + \frac{1}{\mathsf{r}} \left(1 + \frac{\partial \mathbf{p}}{\partial \mathbf{x}} \frac{\delta^{\mathsf{r}}}{\mathbf{f} \mathbf{u}_{\infty} \mathbf{v}}\right) \left(\frac{\mathbf{y}}{\delta}\right)^{\mathsf{r}} (1)$ $\frac{\mathbf{u}}{\mathbf{u}_{\infty}} = \left(\frac{\mathbf{r}}{\mathbf{r}} - \frac{\partial \mathbf{p}}{\partial \mathbf{x}} \cdot \frac{\delta^{\mathsf{r}}}{\mathbf{r}\mathbf{u}_{\infty}\mathbf{v}}\right) \left(\frac{\mathbf{y}}{\delta}\right) + \left(\frac{\partial \mathbf{p}}{\partial \mathbf{x}} \frac{\delta^{\mathsf{r}}}{\mathbf{r}\mathbf{u}_{\infty}\mathbf{v}}\right) \left(\frac{\mathbf{y}}{\delta}\right)^{\mathsf{r}} - \frac{1}{\mathsf{r}} \left(1 + \frac{\partial \mathbf{p}}{\partial \mathbf{x}} \frac{\delta^{\mathsf{r}}}{\mathbf{r}\mathbf{u}_{\infty}\mathbf{v}}\right) \left(\frac{\mathbf{y}}{\delta}\right)^{\mathsf{r}} (\mathsf{r})$ $\frac{\mathbf{u}}{\mathbf{u}_{\infty}} = \left(\frac{\partial \mathbf{p}}{\partial \mathbf{x}} \cdot \frac{\delta^{\mathsf{T}}}{\mathsf{T}\mathbf{u}_{\infty}\mathbf{v}}\right) \left(\frac{\mathbf{y}}{\delta}\right)^{\mathsf{T}} + \frac{1}{\mathsf{T}} \left(1 - \frac{\partial \mathbf{p}}{\partial \mathbf{x}} \frac{\delta^{\mathsf{T}}}{\mathsf{T}\mathbf{u}_{\infty}\mathbf{v}}\right) \left(\frac{\mathbf{y}}{\delta}\right)^{\mathsf{T}} (\mathsf{T})$ $\frac{u}{u} = \frac{\pi}{r} \frac{y}{\delta} - \frac{1}{r} \left(\frac{y}{\delta} \right)^{T} (f)$

the second se	
در کانال با پلهٔ وارون سازگار با شکل، سطح AB در امتداد محور y نوسان میکند. کدام مـورد درخصـوص انـدازه مرابع میکند با Sup	
دردابه AMB یا ANB درست است و فشار در مقطع خروجی چه تغییری میکند؟ محمد است	
۲) ANB، گردابه کوچک _ افزایش می یابد.	
۲) ANB، گردابه بزرگ _ افزایش می یابد. ۲ می ا	
AND (AND (AND (A)) (AND (A)) (A)) (AND (A))	
AMB، گردابه بزرگ _ افزایش می یابد.	
پروفیل سرعت جریان بین دو صفحه موازی با فاصله H که صفحه بالایی با سرعت \mathbf{U}_{o} حرکت داده میشود به	- 38
رم $\frac{\mathbf{U}_{\circ}\mathbf{y}}{\mathbf{H}}$ است، کدام مورد درخصوص میزان ورتیسیتی این جریان صحیح است؟	ò
) میزان ورتیسیتی در همه جریان ثابت و برابر با $rac{-\mathrm{U}_\circ}{\mathrm{H}}$ است.	
۱) ماکزیمم ورتیسیته روی دیواره بالایی با مقدار $\displaystyle \frac{\mathrm{U}_{\circ}}{\mathrm{H}}$ روی میدهد.	
۲) ماکزیمم ورتیسیته در نقطه ماکزیمم تنش <mark>برشی در جریان ر</mark> وی میدهد.	
۲) ورتیسیته بهصورت خطی از مقد <mark>ار صفر تا 📕</mark> روی <mark>دیواره بالایی متغ</mark> یر است. H	
ر جریان سیال بر روی یک جسم خاص، سرعت جریان آزاد از رابطه $U(x) = U_{\infty}(1 - \frac{x}{L})$ پیروی میکند. در	- "
بورد چنین جریانی، اگر L به اندازه کافی بزرگ باشد، کدام گزینه صحیح میباشد؟ س	0
U(x)	
۲) امکان وقوع جدایش لایه مرزی وجود ندارد.	
۱) گرادیان فشار مساعد در مسئله برقرار است.	
۲) امکان وقوع جدایش لایه مرزی وجود ندارد. ۲) گرادیان فشار مساعد در مسئله برقرار است. ۲) جدایش لایه مرزی به وقوع خواهد پیوست.	
۲) در درون لایه مرزی تنش برشی بر روی جسم ثابت خواهد بود و با x تغییر نمی کند.	
سفحهای به طول ۲ متر و عرض یک متر در جریان بادی قرار دارد. برای اینکه حداقل نیروی پسا روی صفحه اعمال	
شود، بهتر است صفحه چگونه قرار گیرد؟	
۲) موازی جریان باد و عرض آن در جهت باد ۲۰ (۲۰) موازی جریان باد و طول آن در جهت باد	
۲) عمود بر جریان باد و طول آن موازی افق	
یک چشمه به قدرت m در فاصله h از یک دیوار قرار گرفته اسـت. کـدام مــورد معــرف فشــار در امتــداد دیــوار	
(x = °)) است؟ (ρ چگالی، P₀ فشار در دوردست)	
$P_{o} + \frac{\rho m' x'}{\tau \pi^{\tau} (x^{\tau} + h^{\tau})^{\tau}} $	
$P_{o} - \frac{\rho m^{r} x^{r}}{\pi^{r} (x^{r} + h^{r})^{r}} $	
$ \xrightarrow{P_{\circ}} - \frac{\rho m^{r} x^{r}}{r \pi^{r} (x^{r} - h^{r})} $	
$P_{o} = \frac{\rho m^{\gamma} x^{\gamma}}{\gamma \pi^{\gamma} (x^{\gamma} + h^{\gamma})^{\gamma}} $	

۴۰ – معیاری که براساس آن می توان دربارهٔ فرض پیوستگی محیط (continuum mechanics) تصمیم گرفت، کدام است؟

$$St = rac{\mathrm{fd}}{\mathrm{U}}$$
) عدد فرود $\mathrm{Fr} = rac{\mathrm{V}}{\sqrt{\mathrm{gh}}}$) عدد فرود (Y $\mathrm{Fr} = rac{\mathrm{V}}{\sqrt{\mathrm{gh}}}$) عدد نادسن (Y) عدد نادسن (Re = $rac{\mathrm{\rho}\mathrm{Vd}}{\mathrm{u}}$) عدد زینولدز (Re = $rac{\mathrm{r}}{\mathrm{S}}$

۴۲- کرهای را درنظر بگیرید که از حالت سکون در سیال غیر لزجی سقوط میکند. اگر ρ_o چگالی کره و ρ چگالی سیال باشد، شتاب کره کدام مورد است؟ (g، شتاب گرانش است.)

$$\frac{\rho_{\circ} + \rho}{\rho_{\circ} + \frac{1}{\gamma}\rho} g (1)$$

$$\frac{\rho_{\circ} - \rho}{\rho_{\circ} + \frac{1}{\gamma}\rho} g (7)$$

$$\frac{\rho_{\circ} - \rho}{\rho_{\circ} + \frac{1}{\gamma}\rho} g (7)$$

$$\frac{\rho_{\circ} - \rho}{\rho_{\circ} + \frac{1}{\gamma}\rho} g (7)$$

$$\frac{\rho_{\circ} + \rho}{\rho_{\circ} + \frac{1}{\gamma}\rho} g (7)$$

۴۳ – مجرای باریکی به عرض ۲**B و عمق واحد در جهت گرانش درنظر بگیرید. سیالی با چگالی p و لزجت µ در این** مجرا بهسمت پایین بهصورت آرام حرکت میکند. سرعت متوسط درون مجرا کدام است؟

$$\frac{\frac{1}{r} \frac{\rho g B^{r}}{\mu}}{\frac{r}{r} \frac{\rho g B^{r}}{\mu}} (r)$$
$$\frac{\frac{1}{r} \frac{\rho g B^{r}}{\mu}}{\frac{r}{r} \frac{\rho g B^{r}}{\mu}} (r)$$
$$\frac{\frac{1}{r} \frac{\rho g B^{r}}{\mu}}{\frac{r}{r} \frac{\rho g B^{r}}{\mu}} (r)$$

۴۴- کدام رابطه نشان دهندهٔ رابطهٔ ناپایای جابه جایی ـ پخش غیر خطی است؟

$\frac{\partial u}{\partial t} = \mu \frac{\partial^{Y} u}{\partial x^{Y}}$ (Y	$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \mu \frac{\partial^{Y} u}{\partial x^{Y}} (1)$
$\frac{\partial u}{\partial t} + \mu \frac{\partial u}{\partial x} = \circ \ (f$	$\frac{\partial u}{\partial t} + C \frac{\partial u}{\partial x} = \mu \frac{\partial^{Y} u}{\partial x^{Y}} (Y$

 $s = c_0 NVU$

- ۴۵ کدام مورد درخصوص ضریب دوم لزجت که یک خاصیت ترموفیزیکی سیال است، درست تر است؟
 ۱) اگر از پیشنهاد استوکس برای سیال تراکمپذیر استفاده نشود، تانسور تنش ناشی از آن به تانسور تنش اضافه می شود.
 ۲) در جریان سیال با عدد رینولدز بالا توأم با تراکمپذیری نسبتاً کم، باز هم می توان از اثر آن صرفنظر کرد.
 ۳) در جریان سیال تراکمپذیر، اگرچه ظاهر می شود، به پیشنهاد استوکس راهی برای حذف اثر آن وجود دارد.
 ۴۵ می شود.
- ۴۶- با انتقال گرما به آهستگی و برگشت پذیر به یک سیستم دارای گاز ایده آل طی فرایند فشار ثابت، حجم آن دو برابر میشود. تغییر آنتروپی بر واحد جرم سیستم چقدر است؟ (گرماهای ویژه ثابت فرض شوند.)
 - $C_v Ln(\frac{1}{r})$ (r $C_p Ln(r)$ ()
 - $C_{\rm P} {\rm Ln}(\frac{1}{\gamma})$ (f $C_{\rm v} {\rm Ln}(\gamma)$ (r
- ۴۷- آنتروپی یک سیستم ترمودینامیکی برحسب متغیرهای حجم (V) ، انرژی داخلی (U) و تعداد مولها (N) به شکل زیر است. نسبت فشار به دما (P/2) در این سیستم کدام است؟
 - $c_{\circ}NV$ (r $c_{\circ}NU$ (r $\frac{c_{\circ}N}{s}$ (r
- و ضریب ژول تامسون $\alpha = \frac{1}{V} (\frac{\partial V}{\partial T})_p$ اگر معادله گاز واندروالس $P = \frac{RT}{V m} \frac{n}{V^{\intercal}}$ و ضریب ژول تامسون –۴۸
 - بر حسب α کدام است؟ (Inversion Point) بر حسب α کدام است? $\mu_j = (\frac{\partial T}{\partial P})_h$ $T = \tau \alpha$ (۲ $T = \alpha$ (۱) $T = \alpha^{\gamma}$ (۴ $T = \frac{1}{2}$ (۳)
- یک سیستم در حال تعادل حرارتی با محیط خود در دمای T است. اگر به سیستم در فشار ثابت، حرارت داده شود -۴۹ یک سیستم در حال تعادل حرارتی با محیط خود در دمای T است. اگر به سیستم در فشار ثابت، حرارت داده شود و تبادل کاری به غیر از انبساط وجود نداشته باشد، کدام مورد درست است؟ () $dS_{H,P} \ge \circ dH_{S,P} \le \circ$ () $dS_{H,P} \le \circ dS_{H,P} \le \circ dS_{H,P} \le \circ$

- ۵۱ دیاگرام فاز یک آلیاژ در شکل زیر نشان داده شده است. تعداد درجهٔ آزادی در نقطه E کدام است؟ (قاعدهٔ فاز گیبس F+R=n+۲ که n تعداد اجزاء، R تعداد فازها و F درجهٔ آزادی است.)
 - () صفر
 - 1 (1
 - ۲ (۳
 - ٣ (۴

- A + α alus + α alus - β alus - β
- ۵۲ ضمن انجام فرایندی در سیستم (جرم کنترل)، خواص تعادل اولیه و نهایی به قرار زیر است. اگر جرم سیستم یک کیلوگرم و فشار محیط P_o = ۱۰۰ kPa و دمای محیط T_o = ۳۰۰ K باشد، تغییر اگزرژی سیستم طی این فرایند چند kJ است؟

$\mathbf{u}_1 = \mathbf{Y} \mathbf{V} \circ \circ \frac{\mathbf{k} \mathbf{J}}{\mathbf{k} \mathbf{J}}$	$s_1 = V_/ \frac{kJ}{kg - K}$	$v_1 = \circ_1 r \Delta \frac{m^r}{kg}$	
$\mathbf{u}_{\mathbf{Y}} = \mathbf{Y} \boldsymbol{\mathcal{P}} \circ \circ \frac{\mathbf{k}J}{\mathbf{k}\mathbf{g}}$	$s_{\gamma} = \gamma_{/} \gamma \frac{kJ}{kg - K}$	$v_{\gamma} = \circ_{/} \forall \Delta \frac{m^{\gamma}}{kg}$	
		+180 (2	-180 (1
		+1 0 (4	- λ ° (٣

 T_{o} افت اگزرژی گاز ایدئال در فرایند اختناق آدیاباتیک با نسبت فشار ۳۶۸ $= \frac{P_{T}}{P_{1}}$ چقدر است؟ (دمای محیط را -۵۳ درنظر بگیرید.)

- RT。 (۲ •/۶۳۲ RT。 (۱ بف (۴ •/۳۶۸ RT。 (۳
- ۵۴ در یک سیستم، ترازهای انرژی بهترتیب ۰، ۱، ۲، ۳، ۴، ... واحد هستند، دیژنریسی هر تراز را ۱۰ درنظر بگیرید. تعداد ذرات ۴ بوده و انرژی سیستم ۳ واحد است. تعداد ماکرو استیت این سیستم چند تا است؟
 - 1 (1
 - ۲ (۲
 - ۳ (۳
 - F (F
- ۵۵ در یک سیستم ترازهای انرژی بهترتیب ۵، ۱، ۲، ۳، ۴، ... واحد هستند، دیژنریسی هر تراز را ۱۰ درنظـر بگیریـد. تعداد ذرات ۴ بوده و انرژی سیستم ۳ واحد است. اگر توزیع ماکسول بولتزمن اصلاح شده درخصوص این سیسـتم درست باشد، تعداد میکرو استیت ماکرو بیشترین احتمال این سیستم چقدر است؟
 - ۵۰۰۰ (۱
 - ۵۰۰۰۰ (۲
 - 1994 (*
 - 1994 0 (4

Safety Valve

۵۶– سیلندر – پیستون نشان داده شده در ابتدا حاوی ۵ لیتر هـوا در فشـار ۲۰ کیلوپاسـکال و دمـای ۳۰۰ کلـوین می. میباشد و پیستون مسی به جرم ۲۰ کیلوگرم و قطر ۱۰ سانتیمتر کف سیلندر قرار دارد. در بالای سـیلندر شـیر اطمینانی قرار دارد که روی ۱۰۰ کیلوپاسکال تنظیم شده است. جریان هوایی با دمای ۳۰۰ کلوین و دبی جرمـی ثابت ۱۰ گرم بر دقیقه از مجرای زیر پیستون وارد میشود و پیستون را به آهستگی بهسمت بالا حرکت مـیدهـد. سیلندر و پیستون کاملاً عایق هستند و اصطکاک ناچیز است. دمای هوا در داخل سیلندر در لحظه باز شدن شـیر اطمینان چند کلوین است؟ (تغییرات گرمای ویژه نسبت به دما ناچیز است. 1/۴)

- 540 (1
- FVD (1
- ۳۸ ۰ (۳
- r ... (۴

1 Inlet

- ۵۷- یک مخزن کاملاً خالی به حجم ^۳ ۱۵ m^۳ به خط لولهای که هوا در دمای محیط C°C و فشار ۸MPa در آن جریان است وصل شده است. شیر بین مخزن و خط لوله باز میشود و مخزن به سرعت پر شده و فشارش به فشار خط لوله میرسد. در این شرایط، شیر بسته و فرصت کافی به مخزن داده میشود تا هوای داخل مخزن دمایش به دمای محیط برسد، فشار نهایی هوا برحسب مگاپاسکال در داخل مخزن چقدر است؟ (k_{air} = ۱/۴) ۱) ۸
 - F/A (T
 - D/V ("
 - F,97 (F
- ۵۸- یک سیستم ویژه دارای ترازهای انرژی صفر، ۱ و ۲ واحد است، دیژنریسی ترازها ۱۰۰۰۰ درنظر گرفته شده است. تعداد ذرات ۳۰۰۰ و انرژی درونی آن ۱۰۰۰ واحد است، توزیع مکسول بولتزمن درست است، مقدار e^{-β} در شرایط تعادل ترمودینامیکی چقدر است؟ (۳/۶ = ۲/۶)
 - 1/0 (1
 - 1/5 (5
 - 0,474 (7
 - 0/VTF (F
- ۵۹ آنتروپی بر کیلومول گاز آرگون (تک اتمی) برحسب کیلوژول بر کیلومـول کلـوین در دمـای ۳۰۰ کلـوین و فشـار ۲۰۰ کیلوپاسکال چقدر است؟ (اتمهای آرگون در پایینترین تراز الکترونی بوده و دیژنریسی پایینترین تراز الکترونی برابر یـک

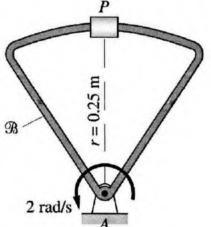
 $\frac{Z_{t}}{N} = Y_{/} \Delta \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{v} \mathfrak{s} \frac{M^{\frac{1}{Y}} T^{\frac{1}{Y}}}{P} e^{1/2} \ln (10^{\circ}) \simeq 18/1) = 10 (10^{\circ}) \ln (10^{\circ}) \simeq 10^{\circ}$ فسرض شسود، جسرم مولکولی آرگ ول برخسب (kPa است. (kPa جرم مولکولی، T بر حسب K و P برخسب M))

- 110 (1
- 100 (1
- 110 (1
- 710 (4

۶۰ اگر تابع تقسیم الکترونی گاز اکسیژن برابر ۳/۲۳ = Z_e باشد، سهم تعداد مولکولهای این گاز در پایین ترین تراز الکترونی چقدر است؟ (دیژنریسی این تراز برابر صفر است.)
 ۱ (۱
 ۱ (۱
 ۲) ۸ (۳
 ۹) ۳ (۴

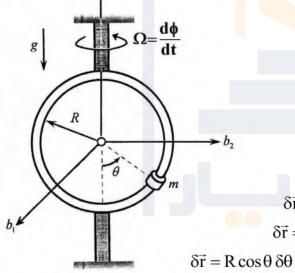
ديناميک پيشرفته _ارتعاشات پيشرفته _کنترل پيشرفته:

۶۱ – بردارهای یکهٔ مختصات هذلولوی ـ بیضوی (α-β) برحسب j و j بردارهـای یکـهٔ مختصـات دکـارتی متعامـد (x-y) کدامند؟


 $\begin{cases} x = \cosh \alpha . \sin \beta \\ y = \sinh \alpha . \cos \beta \end{cases}$

$$\hat{\mathbf{u}}_{\alpha} = \frac{\sinh\alpha.\sin\beta\hat{\mathbf{i}} + \cosh\alpha.\cos\beta\hat{\mathbf{j}}}{\sqrt{\sinh^{\gamma}\alpha.\sin^{\gamma}\beta + \cosh^{\gamma}\alpha.\cos^{\gamma}\beta}} , \quad \hat{\mathbf{u}}_{\beta} = \frac{\cosh\alpha.\cos\beta\hat{\mathbf{i}} - \sinh\alpha.\sin\beta\hat{\mathbf{j}}}{\sqrt{\cosh^{\gamma}\alpha.\cos^{\gamma}\beta + \sinh^{\gamma}\alpha.\sin^{\gamma}\beta\hat{\mathbf{j}}}}$$

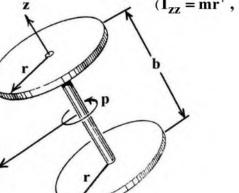
$$\hat{\mathbf{u}}_{\alpha} = \frac{\cosh\alpha.\cos\beta\hat{\mathbf{i}} + \sinh\alpha.\sin\beta\hat{\mathbf{j}}}{\sqrt{\cosh^{2}\alpha.\cos^{2}\beta + \sinh^{2}\alpha.\sin^{2}\beta}} , \quad \hat{\mathbf{u}}_{\beta} = \frac{-\sinh\alpha.\sin\beta\hat{\mathbf{i}} + \cosh\alpha.\cos\beta\hat{\mathbf{j}}}{\sqrt{\sinh^{2}\alpha.\sin^{2}\beta + \cosh^{2}\alpha.\cos^{2}\beta}}$$


$$\hat{u}_{\alpha} = \frac{\sinh\alpha.\cos\beta\hat{i} + \cosh\alpha.\sin\beta\hat{j}}{\sqrt{\sinh^{2}\alpha.\cos^{2}\beta + \cosh^{2}\alpha.\sin^{2}\beta}} , \quad \hat{u}_{\beta} = \frac{-\cosh\alpha.\sin\beta\hat{i} + \sinh\alpha.\cos\beta\hat{j}}{\sqrt{\cosh^{2}\alpha.\sin^{2}\beta + \sinh^{2}\alpha.\cos^{2}\beta}}$$

۶۲ قاب شکل زیر با سرعت ثابت ۲ رادیان بر ثانیه حول مرکز لولای A دوران می کند. در همین حال لغزندهٔ P با سرعت ثابت ۰/۲ متر بر ثانیه نسبت به قاب به سمت راست حرکت می کند. شتاب لغزنده چند متر بر مجذور ثانیه و به کدام طرف است؟
 ۸ مرکز انحنای قاب در محل لغزندهٔ P مرکز لولای A است.)
 ۱) ۶۳/۰ ، بالا
 ۲) ۶۳/۰ ، پایین

بازو در لحظهٔ نشاندادهشده در شکل زیر، با سرعت و شتاب زاویـهای $\varpi_1 = \pi rad{s}$ و $\dot{\omega}_1 = \pi rac{rad}{s}$ حـول محـور	-98
عمودی دوران میکند و دیسک با سرعت و شتاب زاویهای $\omega_{\gamma} = \gamma rad{s} = \omega_{\gamma} = rad{s}$ حول آن دوران میکنـد.	
شتاب زاویه ای مطلق دیسک چند $\frac{rad}{s}$ است؟	
VF1 (1	
$\sqrt{\Delta T}$ (T	
۵ (۳	
F (F	

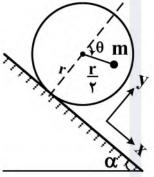
یک مهره به جرم m، آزادانه داخل یک حلقه به شعاع R حرکت میکند. ($\dot{\mathbf{b}}_{\mathbf{r}}$ زاویهٔ حلقه حول $\mathbf{b}_{\mathbf{r}}$ و تابعی معلوم برحسب زمان است که به حلقه تحمیل شده است. اگر بردار موقعیت مهره و $\mathbf{b}_{\mathbf{r}} - \mathbf{R}\cos\theta \mathbf{b}_{\mathbf{r}} - \mathbf{R}\cos\theta \mathbf{b}_{\mathbf{r}}$ باشد، آنگاه تغییرات این بردار موقعیت کدامیک از روابط زیر است؟ (توجه: $\mathbf{b}_{\mathbf{r}}$ ، $\mathbf{b}_{\mathbf{r}}$ و $\mathbf{b}_{\mathbf{r}}$ دستگاه مختصات متصل به حلقه دوار است.)

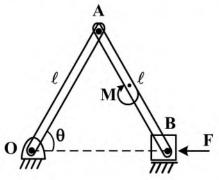

 $\delta \vec{r} = R \cos \theta \, \delta \theta \, \vec{b}_{r} + R \sin \theta \, \delta \vec{b}_{r} + R \sin \theta \, \delta \theta \, \vec{b}_{r} \quad (r + R \sin \theta \, \delta \theta \, \vec{b}_{r} + R \sin \theta \, \delta \theta \, \vec{b}_{r}$

 $\delta \vec{r} = R\cos\theta \,\delta\theta \,\vec{b}_{r} + R\sin\theta \,\delta\theta \,\vec{b}_{r} \quad (1)$

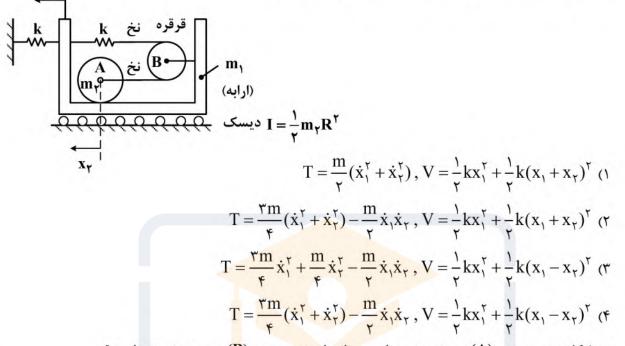
- $\delta \vec{r} = R \cos\theta \,\delta\theta \,\vec{b}_r + R \sin\theta \,\delta\vec{b}_r + R \sin\theta \,\delta\theta \,\vec{b}_r R \cos\theta \,\delta\vec{b}_r \ (f$
- ۶۵- دو دیسک نازک، یکنواخت و مشابه، هر کدام به جرم m و شعاع r، توسط محور مشترک بدون جرمشان یـک جسـم صلب تشکیل داده که بدون گشتاور خارجی حول مرکز جرم در حال دوران در فضا است. مقدار b کدام باید باشد تـا

$$(I_{zz} = mr^{\intercal}, I_{xx} = \frac{1}{7}m(r^{\intercal} + b^{\intercal})$$
 حرکت پیشروشی نداشته باشد؟ (فرض شود $(I_{zz} = mr^{\intercal}, I_{xx} = \frac{1}{7}m(r^{\intercal} + b^{\intercal})$


- () m
 - r
 - ۲
 - r (۳
 - rr (۴


۶۶ – توزیع جرم میلههای باریک OA و AB در مکانیزم زیر یکنواخت است و از اصطکاک در لولاهـای O و A و محـل تماس نقطهٔ B صرفنظر میشود. میلهٔ OA دارای طول ۴m و جرم ۳kg و میلـهٔ AB دارای طـول ۱۳ و جـرم ۱۲ kg است. در لحظهٔ رها کردن میلهها از حالت سکون، شتاب زاویهای میلهٔ OA، چند برابر شتاب زاویهای میلـهٔ

- ۶۷ در شکل زیر، جرم m توسط یک میلهٔ <mark>بدون جرم به یک حلقهٔ بدون جرم و به</mark> شـعاع r متصـلشـده و بـهسـمت پـایین میغلتد. طول میلهٔ بدون جرم $\frac{r}{7}$ است. با <mark>فرض مرجع انرژی پتانسیل دلخوا</mark>ه، ترم انرژی پتانسیل این سامانه کدام است؟
 - $mg[r \theta \cos \alpha \frac{r}{\gamma} \sin (\theta + \alpha)] + c \quad (1)$ $mg[-r \theta \sin \alpha + \frac{r}{\gamma} \cos (\theta + \alpha)] + c \quad (7)$ $mg[r \theta \sin \alpha + \frac{r}{\gamma} \cos \theta] + c \quad (7)$ $mg[1 \cos (\alpha + \theta)] + c \quad (7)$

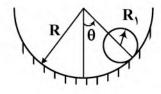


- ۶۸- مکانیزم نشاندادهشده در نقطهٔ B تحت نیروی F و در نقطه میانی لینک AB تحت گشتاور M قـرار دارد. نیـروی تعمیم یافته متناظر با مختصهٔ عمومی 6، کدام است؟
 - $Q_{\theta} = \frac{M}{r\ell} F\sin\theta \quad (1)$ $Q_{\theta} = M r\ell F\sin\theta \quad (r)$ $Q_{\theta} = \frac{M}{r\ell} + F\sin\theta \quad (r)$ $Q_{\theta} = M + r\ell F\sin\theta \quad (r)$

در پاندول زیر، طول نخ مطابق رابطهٔ r = a + b cos ωt تغییر می کند و در آن a، d و ω مقادیر مثبت و ثابتی هستند. اگر پاندول مقید به حرکت در صفحه قائم باشد، لاگرانژین آن کدام است؟ θ $L = m[\frac{1}{2}b^{\gamma}\omega^{\gamma}\sin^{\gamma}\omega t - g(a + b\cos\omega t)\cos\theta]$ (1) $L = m[\frac{1}{r}(a^{r} + b^{r}\cos^{r}\omega t + rab\cos\omega t)\dot{\theta}^{r} + \frac{1}{r}b^{r}\omega^{r}\sin^{r}\omega t - g(a + b\cos\omega t)\cos\theta]$ (r $L = m[\frac{1}{2}(a^{r} + b^{r}\cos^{r}\omega t + rab\cos\omega t)\dot{\theta}^{r} + \frac{1}{2}b^{r}\omega^{r}\sin^{r}\omega t + g(a + b\cos\omega t)\cos\theta]$ (r $L = m[\frac{1}{r}b^{r}\omega^{r}\sin^{r}\omega t + g(a + b\cos\omega t)\cos\theta]$ (* ۷۰ – ذرهای به جرم m روی دیسک بدون جر<mark>می به شعاع r و در فاصله r</mark> از مرکز دیسک O قرار دارد. دیسک بدون لغزش روی سطحی با شیب α میغلتد. کدام مورد، معادلات کانونیکال همیلتون است؟ a α $\dot{\theta} = \frac{P_{\theta}}{\mathrm{mr}^{\gamma}(\frac{\Delta}{r} + \cos\theta)} , \\ \dot{P}_{\theta} = \frac{-P_{\theta}^{\gamma}\cos\theta}{\mathrm{\gamma}\mathrm{mr}^{\gamma}(\frac{\Delta}{r} + \sin\theta)^{\gamma}} + \mathrm{mgr}[\cos\alpha + \frac{\mathrm{v}}{\mathrm{v}}\cos(\alpha + \theta)]$ (v) $\dot{\theta} = \frac{P_{\theta}}{\mathrm{mr}^{\gamma}(\frac{\Delta}{r} + \cos\theta)} , \dot{P}_{\theta} = \frac{-P_{\theta}^{\gamma}\sin\theta}{\mathrm{\gamma}\mathrm{mr}^{\gamma}(\frac{\Delta}{r} + \cos\theta)^{\gamma}} + \mathrm{mgr}[\sin\alpha + \frac{\gamma}{\gamma}\sin(\alpha + \theta)]$ (7) $\dot{\theta} = \frac{P_{\theta}}{mr^{\gamma}(\frac{\Delta}{c} + \sin\theta)} , \dot{P}_{\theta} = \frac{-P_{\theta}^{\tau}\sin\theta}{\tau mr^{\gamma}(\frac{\Delta}{c} + \cos\theta)^{\gamma}} + mgr[\sin\alpha + \frac{1}{\tau}\sin(\alpha + \theta)] (\tau)$ $\dot{\theta} = \frac{P_{\theta}}{mr^{\gamma}(\frac{\Delta}{r} + \sin\theta)} , \dot{P}_{\theta} = \frac{-P_{\theta}^{\gamma}\cos\theta}{\gamma mr^{\gamma}(\frac{\Delta}{r} + \sin\theta)^{\gamma}} + mgr[\cos\alpha + \frac{\gamma}{\gamma}\cos(\alpha + \theta)]$ (*

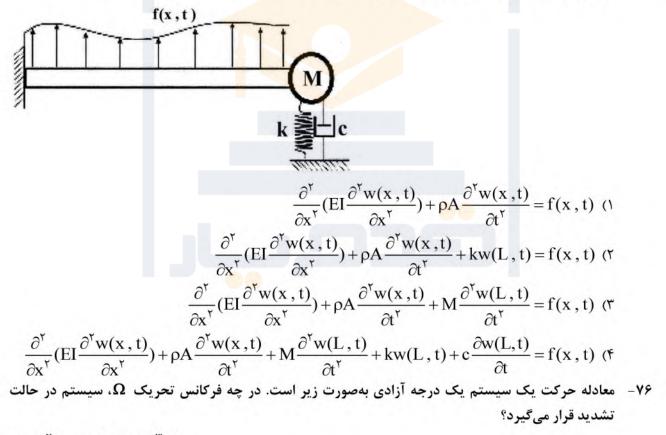
 \mathbf{m}_{γ} مركز ديسك غلتان به جرم \mathbf{m}_{1} و \mathbf{x}_{1} جابهجايى مطلق مركز ديسك غلتان به جرم \mathbf{m}_{1} مر \mathbf{x}_{1} در سيستم زير، \mathbf{x}_{1} جابهجايى مطلق مركز ديسك غلتان به جرم \mathbf{m}_{1} و \mathbf{x}_{1} و توسط نخ به فنر متصل است. انرژى جنبشى و پتانسيل \mathbf{x}_{1} است. مركز ديسك \mathbf{x}_{1} به ويتانسيل \mathbf{x}_{1} و \mathbf{x}_{1} و توسط نخ به فنر متصل است. انرژى جنبشى و پتانسيل \mathbf{x}_{1} و توسط نخ به فنر متصل است. انرژى جنبشى و پتانسيل

۷۳- فرکانس طبیعی دایرهای استوانهٔ جدار نازکی به جرم m که داخل مسیر <mark>استوا</mark>نهای به شعاع R مــیغلتــد کــدام اســـَ؟ (فرض شود دامنهٔ نوسان کوچک است و کل جرم استوانهٔ جدار نازک بهطور یکنواخت در شعاع R_۱ در سطح جـانبی آن توزیع شده است.)


$$\sqrt{\frac{rg}{R-R_1}} (1)$$

$$\sqrt{\frac{rg}{r(R-R_1)}} (1)$$

$$\sqrt{\frac{rg}{r(R-R_1)}} (1)$$


$$\sqrt{\frac{g}{r(R-R_1)}} (1)$$

$$\sqrt{\frac{rg}{r(R-R_1)}} (1)$$

6

- $$\begin{split} M & M = 1 \\ M & M = 1 \\ M & M \\ M$$
- ۷۵- معادلهٔ دیفرانسیل حرکت تیر زیر با طول L، سطح مقطع A، ممان دوم سـطح مقطـع I، مــدول الاستیســیته E، و چگالی ρ تحت نیروی گسترده و شرایط م<mark>رزی نشان داده شده کد</mark>ام است؟ (خیز تیر w(x, t) است.)

$$\ddot{\mathbf{x}} + \boldsymbol{\omega}_{\mathbf{n}}^{\mathsf{T}} \mathbf{x} = \mathbf{f}_{\circ} \sin \Omega t \cos^{\mathsf{T}} \Omega t$$

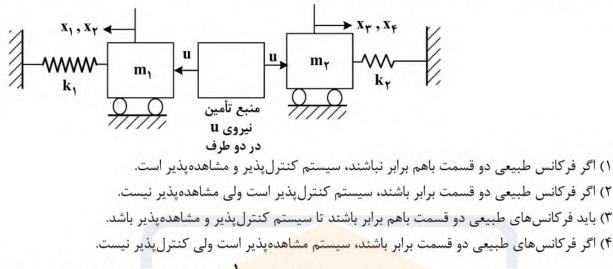
 $\omega_{n} (1)$ $\omega_{n} \circ \tau \omega_{n} (7)$ $\omega_{n} \circ \tau \omega_{n} (7)$ $\omega_{n} \circ \frac{\omega_{n}}{\tau} (7)$ $\frac{\omega_{n}}{\tau} \circ \frac{\omega_{n}}{\tau} (7)$

x	شفت برحسب رادیان بر ثانیه ۵ _n باشد، کد علیہ Ξ	$(C = \sqrt{\frac{G}{\rho}})$ ام است؟ n
	elle	$\tan \frac{\omega_n x}{C}$ (1)
		$\cos{\frac{\omega_n x}{C}}$ (Y
		$\sin \frac{\omega_n x}{C}$ (r
		$\cot \frac{\omega_n x}{C}$ (f
ا فرض شکل مود ار تعاش طـوا	مدول الاستیسیته E و جرم M متصل به آن با	- در میله یکنواخت زیر با طول L، جرم m،
r		πν
حسب ^۲ (<mark>۲</mark>) کدام است؟ s	س طبیعی این میله طبق روش ریلی ــریتز بر	به صورت $\frac{\pi x}{TL}$ ، مربع فرکاند u(x) = a sin
حسب ^۲ (<mark>-۲</mark>) کدام است؟ s	س طبیعی این میله طبق روش ریلی ــریتز بر-	بهصورت $\frac{\pi x}{rL}$ ، مربع فرکاند $\frac{\pi^{r} EA}{\Lambda L(M+m)}$ (۱
5	س طبیعی این میله طبق روش ریلی ــریتز بر- M	
حسب ^۲ (<mark>-۲</mark>) کدام است؟ <u></u>		$\frac{\pi^{r} EA}{\lambda L(M+m)} $ (1)

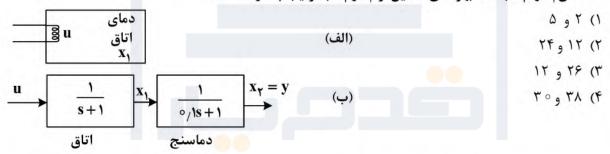
۷۹ - محور بلند زیر به طول L، جرم حجمی p، مدول برشی G و ممان قطبی سطح مقطع J در یک سر آزاد و در سر محول دیگر طبق شکل محکم شده است. فرکانس طبیعی n اُم ارتعاش پیچشی آن برحسب F s

$$\frac{n\pi}{rL}\sqrt{\frac{G}{\rho}} (1)$$

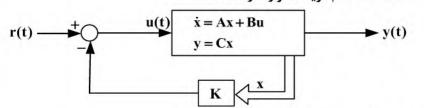
$$\frac{n\pi}{rL}\sqrt{\frac{G}{\rho}} (1)$$


$$\frac{n\pi}{L}\sqrt{\frac{G}{\rho}} (1)$$

$$\frac{(rn-1)\pi}{L}\sqrt{\frac{G}{\rho}} (1)$$


$$\frac{(rn-1)\pi}{L}\sqrt{\frac{G}{\rho}} (1)$$

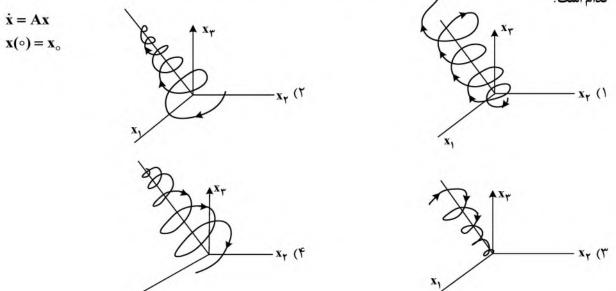
ه E، سطح مقطع A، طول L و جرم حجمی ρ متصل است. معادلهٔ	 جرم m در انتهای یک میله با مدول الاستیسیت
	فرکانسی ارتعاشات آزاد طولی میله کدام است؟
J	$\frac{\omega L}{C} \tan \frac{\omega L}{C} = \frac{\rho A L}{m} $ ()
m	C C M C M C M
<u></u>	$\frac{\omega L}{C} \sin \frac{\omega L}{C} = \frac{\rho A L}{m}$ (7)
	C C m
	$\tan \frac{\omega L}{C} = \frac{\rho A L}{m}$ (*
	$\sin \frac{\omega L}{C} = \frac{\rho A L}{m}$ (*
م ب م اندان الم م م م م م م م م م م م م م م م م م م	• …
شده که اختلاف فاز حداکثر °۳۰ را به سیستم اضافه کند. اگر	
اندگار سیستم تحت ورودی شیب واحد چند درصد است؟	فرکانس قطع سیستم <mark>۱^۰ ب</mark> اشد، خطای حالت م
	· •/•٩ (1
$\xrightarrow{+} \underbrace{\alpha Ts + 1}_{Ts + 1} \xrightarrow{K} \underbrace{C(s)}_{s(s + 2)}$	۹ (۲
	11 (٣
	77 (۴
ده شدهاند و در آن u نیروی وارد شده به جرم m و $y = x$ تغییر	، در سیستم زیر، پارامترها در سیستم متریک دا
ی کنترل کننده فیدبک بردار حالت طوری طراحی شود که خطای	
مه قطبهای سیستم فیدبک در ۲- واقع شوند. مقادیر بهرههای	
$\mathbf{x} = \mathbf{y}$	کنترلکننده الم، الموالي المه المترتيب کدامند؟
\rightarrow k $x_1 = x$	۲) ۲، ۹ و ۲
$ \begin{array}{c} & & \\ & & $	٢) ٢، ٢ و ٢٢
	٣) ۵، ۱۴ و ۶
	۴) ۱۱، ۵ و ۸
m=1 $k=1$ $b=1$	
$\mathbf{A} = \begin{vmatrix} \mathbf{a}_1 & \circ & \circ \\ \mathbf{a}_1 & \mathbf{a}_7 & \mathbf{a}_7 \\ \mathbf{x}_7 & \mathbf{x}_7 \\ \mathbf{x}_7 & \mathbf{x}_7 \end{vmatrix} \mathbf{x}_7 = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_7 \\ \mathbf{x}_7 \\ \mathbf{x}_7 \\ \mathbf{x}_7 \end{vmatrix}$ داده شده که در آن $\begin{cases} \dot{\mathbf{x}} = A \\ \mathbf{x}_7 \\ $	x + Bu
داده شده که در آن $\mathbf{x}_{\gamma} = \mathbf{x}_{\varphi} = \mathbf{x}_{\varphi} \mathbf{x}_{\gamma} = \mathbf{x}_{\varphi} \mathbf{x}_{\gamma} = \mathbf{x}_{\varphi} \mathbf{x}_{\gamma} \mathbf{x}_{\gamma} = \mathbf{x}_{\varphi}$	 ۸− معادلات حالت سیستم رسته ۳ بهصورت x₀
	F 7
قی غیر صفر هستند. مودهای رفتاری سیستم به صورت e ^λ ۲ ^t ، e ^λ ۱ ^t و	
قی غیرصفر هستند. مودهای رفتاری سیستم بهصورت e ^λ ۲ ^t ، e ^λ ۱ ^t و	$\mathbf{D} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
، کدام گزینه در خصوص این سیستم درست است؟	A هستند و λ_1 تا λ_{γ} مقادیر ویژه ماتریس $\mathbf{e}^{\lambda_{\gamma} t}$
	 این سیستم کنترل پذیر کامل است.
پذير است.	۱) این سیستم کنترلپذیر کامل است. ۲) یک مود سیستم کنترلپذیر و دو مود کنترلنا ۳) دو مود سیستم کنترلپذیر و یک مود کنترلنا


میستم زیر را درنظر بگیرید که نیروی u واردشده به هر دو جرم m₁ و m₁ و m₁ یکسان است. x₁ و x₁ بهترتیب تغییر مکان و سرعت جرم m₁ و x₈ و x₈ بهترتیب تغییر مکان و سرعت جرم m₁ هستند. سیستم یک ورودی u و یک خروجی y = x₁ + x_۳ دارد. شرط لازم و کافی برای آنکه سیستم کنترلپذیر و مشاهدهپذیر باشد، کدام مورد است؟

- ۸۵ شکل (الف) یک اتاق با دبی حرارتی <mark>ورودی u و دمای x_۱ و تابع تبدیل <mark>ا</mark> بین u و x_۱ است. برای اندازهگیری دما از s+1</mark>
- دماسنج طبق شکل (ب) استفاده می شود. تابع تبدیل بین ورودی x_1 و خروجی دماسنج x_7 با $\frac{1}{(1+8)^{0/2}}$ نشان داده شده است. برای تعیین x_1 از یک تخمین گر رسته کامل استفاده می شود. اگر مقادیر ویژه تخمین گر $x_7 - e^{-1} - e$ متغیرهای حالت آن \hat{x} و \hat{x} باشند، بهرههای تخمین گر 1 و y^1 به تر تیب چقدر هستند؟

اگر سیستم مدار باز با معادلات حالت $\left\{ egin{array}{l} \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \\ \mathbf{y} = \mathbf{C}\mathbf{x} \end{array}
ight\}$ کنترل پذیر و مشاهده پذیر باشد. در مورد سیستم مداربسته زیر $\mathbf{y} = \mathbf{C}\mathbf{x}$ کنترل پذیر و مشاهده است است \mathbf{y}

۱) سیستم مداربسته همواره کنترلپذیر و مشاهده پذیر است.
 ۲) سیستم مداربسته ممکن است نه کنترل پذیر باشد و نه مشاهده پذیر.
 ۳) سیستم مداربسته مشاهده پذیر است ولی ممکن است کنترل پذیر نباشد.
 ۹) سیستم مداربسته کنترل پذیر است ولی ممکن است مشاهده پذیر نباشد.


$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

$$\int \mathbf{y} = \mathbf{C}\mathbf{x}$$

$$\int \mathbf{y} = \mathbf{C}\mathbf{x}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\ \mathbf{a} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\ \mathbf{a} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\ \mathbf{a} & \mathbf{c} & \mathbf{c} \\ \mathbf{a} & \mathbf{c} \\ \mathbf{a} & \mathbf{c} \end{bmatrix} = \mathbf{B} = \begin{bmatrix} \mathbf{a} & \mathbf{c} & \mathbf{a} & \mathbf{c} \\ \mathbf{a} & \mathbf{c} \\ \mathbf{a} & \mathbf{c} \\ \mathbf{c} & \mathbf{c} \end{bmatrix} = \mathbf{B} = \begin{bmatrix} \mathbf{a} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\ \mathbf{a} & \mathbf{c} \\ \mathbf{c} & \mathbf{c} \end{bmatrix} = \mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\ \mathbf{a} & \mathbf{c} \\ \mathbf{c} & \mathbf{c} \\ \mathbf{c} & \mathbf{c} \end{bmatrix}$$

- ۱) نه کنترل پذیر است و نه مشاهده پذیر.
 ۲) هم کنترل پذیر است و هم مشاهده پذیر.
- ۳) کنترل پذیر است ولی مشاهده پذیر نیست.
- ۴) مشاهده پذیر است ولی کنترل پذیر نیست. ۲۰۰۰ سروی بر ۲۰۰۰ س
- ۸۹ در سیستم خطی رسته ۳ با معادله حالت زیر، ماتریس A دو مقدار ویژه مختلط بهصورت σ± jæ و یک مقدار ویژه حقیقی مثبت دارد. با فرض اینکه σ عدد حقیقی منفی و α عدد حقی<mark>قی باش</mark>د، مسیر حرکت (trajectay) این سیستم کدام است؟

https://ghadamyar.com

X,

- ۹۰ در سیستم شکل زیر، رابطه بین کدام ورودی و کدام سیگنال نشاندهنده یک سیستم پایدار مجانبی نیست؟ (سه پاسخ پایدار مجانبی هستند و تنها یک پاسخ پایدار مجانبی نیست.) (سه پاسخ پایدار مجانبی هستند و تنها یک پاسخ پایدار مجانبی نیست.) (۱) رابطه بین ورودی (۲) و سیگنال (y(t)(۲) رابطه بین ورودی (v(t) و سیگنال (v(t)(t) رابطه بین ورودی (v(t) و سیگنال (v(t)(t) رابطه بین ورودی (v(t) و سیگنال (v(t)(t) رابطه بین ورودی (v(t) و سیگنال (v(t)

برنامهریزی ریاضی پیشرفته ـ تکنولوژی پینج و تحلیل اگزرژی ـ تحلیل سیستمهای انرژی:

۹۱ در شرایطی که زمانبندی پروژه رعایت نشده و راهاندازی آن با تأخیر زیاد روبهرو میشود، فاکتور عدم قطعیت در کدام سطح بهینهسازی اهمیت بیشتری پیدا میکند؟

۴) هر سه سطح طراحی فرایند
 ۲) مدیریتی ۳) شرایط عملیاتی ۹۲ درجه آزادی در مسئله خطی زیر چند است؟ $Max: z = \forall x_1 + \Delta x_y$ () صفر s.t. : x, ≤۴ 1 (1 TXY 112 ۲ (٣ $\forall x_1 + \forall x_7 \leq 1$ ٣ (۴ $x_1 \ge \circ, x_r \ge \circ$ مقادیر ضریب لاگرانژ λ_1 و λ_2 به تر تیب چقدر است? – ۹۳ Min $z = x_r^{\gamma}$ () ۲ - و صفر ۲) ۲ و صفر s.t: $x_1 - x_y \leq -1$ ٣) صفر و ۲- $-x_1 - x_r \leq -1$ ۴) صفر و ۲ $X_1, X_7 \geq 0$ با استفاده از روش نیوتن و با شروع از $\begin{bmatrix} 1^{\circ} \\ 16 \end{bmatrix}$ ، مینیمم تابع زیر ((x^*) کدام است? –۹۴ $f(x) = 1 \circ x_1^{r} + \Delta x_1 x_r + 1 \circ (x_r - r)^{r}$ [°/∧ Ψ/Υ] (Υ $\begin{bmatrix} -\circ/\Lambda\\ \Psi/\Upsilon \end{bmatrix} (1)$ [^/^ (" **۹**۵- محدوده کاربردی حاصل از اشتراک دو محدودیت زیر چه شرایطی دارد؟ $\begin{cases} -x_1^{\gamma} + x_{\gamma} \ge 1 \\ x_1 - x_{\gamma} \ge -\gamma \end{cases}$ () محدوده مقعر است. ۲) محدوده محدب است. ۳) محدوده مقعر و محدب نیست.

https://ghadamyar.com

۴) محدوده محدب و مقعر است.

۹۶– یک کارگاه صنایع چوبی دو محصول میز و صندلی تولید می کند. سود تولید هر میز ۱۲ واحد و سود تولید هر صندلی ۸ واحد است. برای تولید هر میز، ^۲ m۵ چوب بلوط و ^۲ m۳ چوب کاج و ۴ ساعت زمان صرف مـیشـود. بـرای تولیـد هـر مندلی، ۲ m۲ چوب بلوط و ^۲ m۳ چوب کاج و ۴ ساعت زمان صرف مـیشـود. بـرای تولیـد هـر مندلی، ۲ m۲ چوب بلوط و ^۲ m۳ چوب کاج و ۲ ساعت زمان صرف می شـود. بـرای تولیـد هـر مندلی، ^۲ m۱ چوب بلوط و ^۲ m۳ چوب کاج و ۴ ساعت زمان صرف مـیزان کـارکرد کارخانـه در هفتـه ۸۰ مندلی، ^۲ m۱ چوب بلوط و ^۲ m۳ چوب کاج و ۳ ساعت زمان صرف می شـود. میـزان کـارکرد کارخانـه در هفتـه ۸۰ مندلی، ۲ ساعت است. موجودی خوراک اولیه کارخانه در هفته ^۲ m ۱۵ چوب بلوط و ^۲ m۰ چوب بلوط و ۲ ساعت است. موجودی خوراک اولیه کارخانه در هفته ۱۵ مندل چوب بلوط و ۲ m۰۰ چوب کاج است. برنامهریزی تولیـد بینه برای ماکزیمم کردن سود کارخانه، به تر تیب منجربه تولید چند میز و صندلی در هفته می شود؟

- 10 9 70 (7
- ۳۳ ، ۱۰ (۳
- To , 0 (F
- ۹۷- در فرمت ماتریسی برای محاسبه ضرایب چندجملهای دو متغیره زیر به روش (حداقل مربعات خطا)، کدام جمله بیشتر تکرار می شود؟(N: تعداد دادهها)

 $y = a + bx_1 + cx_7$ $\sum x_1^r$ (1) $\sum x_r^r$ (r $\sum x_1 x_7$ (r N (4 ۹۸ پاسخ بهینه مسئله، بهترتیب، x_۱ و x_۲ چقدر است؟ $Min: z = x_1 + |x_r - \Delta|$ 0 9 1 (1 s.t.: $-x_r + \gamma x_r \leq -1$ 1 9 0 (1 x_1 , $x_r \ge 0$ -1 , 0 (" o g −1 (f ۹۹- در روش «جستجوی یکبعدی»، برای مینیممسازی تابع زیر با شروع از نقطه ار = x° = (x° = (Δx°) كدام است؟ $\mathbf{f}(\mathbf{x}) = \mathbf{f} \mathbf{x}_1^{\mathsf{Y}} + \mathbf{x}_{\mathsf{Y}}^{\mathsf{Y}} - \mathbf{f} \mathbf{x}_1 \mathbf{x}_{\mathsf{Y}}$ ۲) [`] $\begin{bmatrix} \circ \\ 1 \end{bmatrix}$ (1 [-]] (٣ 1 (۴ ۱۰۰ مینیمم تابع غیرخطی، به ترتیب، X و X چقدر است؟ $\mathbf{Min}: \mathbf{z} = \mathbf{x}_1^{\mathsf{Y}} + \mathbf{x}_2^{\mathsf{Y}} - \mathbf{1}\mathbf{f}\mathbf{x}_1 - \mathbf{9}\mathbf{x}_{\mathsf{Y}} - \mathbf{Y}$ $x_1 + x_r \leq r$ s.t. : $X_1 + \Upsilon X_{\Upsilon} \leq \Upsilon$ - " 91 (1

- ۲) ۳ و ۱ ۳) ۳ و ۱ – ۳) ۱ و ۳
- ۴) ۱ و ۳ –

ا سوخت گاز طبیعی و سه ماه آخر سال با سـوخت نفـت کـوره کـار	
، برابر ارزش حرارتی یک لیتر نفت کوره است. نسبت بازده اکسـرژی	میکند. ارزش حرارتی یک مترمکعب گاز طبیعی
ر در ساعت نسبت بـه سـوخت گـاز طبیعـی ۱۰۰۰ مترمکعـب در	نیروگاه با سوخت نفت کوره به مقدار ۱۰۰۰ لیت
	ساعت، چگونه است؟
	۱) کمتر از یک
	۲) دقیقاً برابر یک
	۳) بیشتر از یک
رابر هستند.	۴) در هر دو حالت، بازدههای اکسرژی و انرژی ب
زمان برق ـ حرارت ـ سرمایش، در کدام قسمت آن صورت می پذیرد؟	۱۰۲- بیشترین تخریب اکسرژی در یک سامانه تولید هم
۲) سامانه مولد بخار از حرارت خروجی از موتور	 محفظه احتراق
۴) گازهای خروجی از دودکش	۳) جریان آب گرم خروجی از نیروگاه
در نیروگاه سیکل ترکیبی دارد؟	۱۰۳ - کدام عامل بیشترین تأثیر را بر راندمان اگزرژی
۲) دمای ورودی توربین	۱) کیفیت سوخت
۴) اثربخشی مبدل حرارتی	۳) دمای محیط
<mark>اص</mark> طکاک طی یک فرایند آدیاباتیک بازگ <mark>ش</mark> تپذیر از شرایط (۱) بــه	۱۰۴ – مقداری هوا درون یک سیلندر و پیستون بدون
<mark>طی این فرایند کدام</mark> مو <mark>ر</mark> د است؟	شرایط (۲) میرس <mark>د.</mark> کاهش سطح اکسرژ <mark>ی هوا ب</mark>
$\mathrm{T_{o}}(\mathrm{S_{\gamma}}-\mathrm{S_{\gamma}})+(\mathrm{U_{\gamma}}-\mathrm{U_{\gamma}})$ (7	$(H_{\gamma} - H_{\gamma}) - T_{\circ}(S_{\gamma} - S_{\gamma}) (\gamma$
$H_{\gamma} - H_{\gamma}$ (f	$(U_{\gamma} - U_{\gamma}) + P_{\circ}(V_{\gamma} - V_{\gamma})$ (*
ں حرارت بین سیالی که تبخیر میشود (T ₁) و سیالی که کنــدانس	۱۰۵- برگشتناپذیری د <mark>ر یک مبدل حرارتی که انتقال</mark>
$(T_M = \sqrt{(T_1 T_Y)} e^{\Delta T} = T_1 - T_Y$	میشود (T _Y)، کدام مورد است؟ (T _o دمای محی
$\mathrm{T_{\circ}}$.Q. $\Delta\mathrm{T.T_{M}}$ (Y	$T_{\circ} . T_{M} . Q$ ()
$T \circ \Delta T$	
$T_{\circ} .Q. \frac{\Delta T}{T_{M}^{\star}}$ (f	$T_{\circ} \cdot Q \cdot \frac{\Delta T}{T_{M}}$ ("

-۱۰۶ - سطح کل انتقال حرارت شبکه مبدل حرارتی (one pass tube, one pass shell) برابـر بـا ۴۰۰۰ متـر مربـع است. اگر هزینه هر مبدل A×۴/۰+۳۰ = cost (هزار دلار) باشد و جدول داده جریانها بهصورت جـدول زیـر ارائه شود، هزینه کل شبکه مبدل حرارتی، چند هزار دلار است؟ (ΔT min = ۱۰ , T_{Hot, pinch} = ۱۵۹)

1260	()
1950	(1

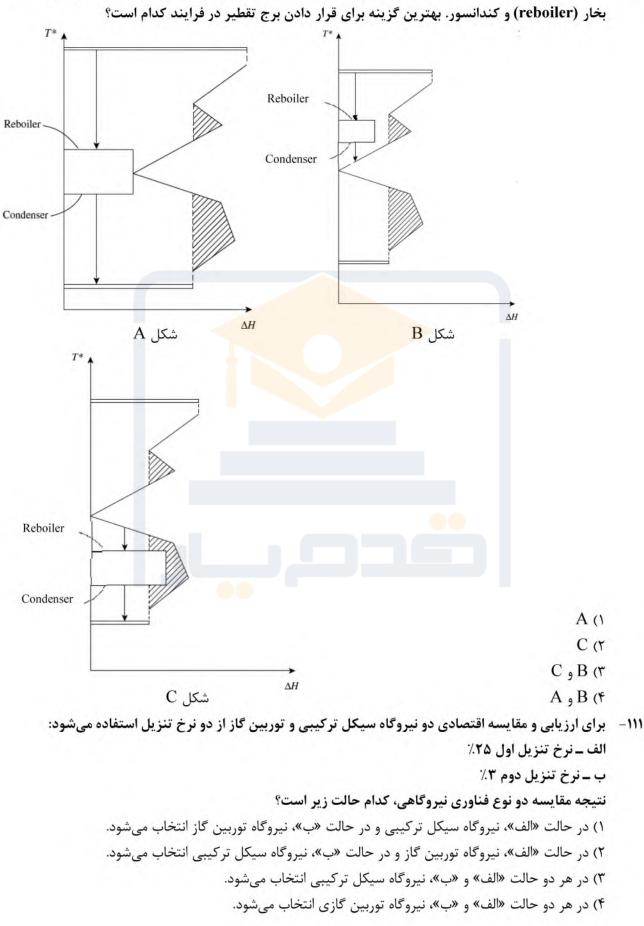
۸۳ ۰ (۳

750 (4

Stream	Ts (°C)	Tt (°C)	CP(MW/K)
Hot	109	۷۷	۲۲
Hot	184	٨٥	٢
Hot	۳۴۳	٩٥	۵
Cold	19	177	10
Cold	11A	190	۲۰

الک الم دادههای منحنیهای مرکب بزرگ (Grand Composite Curves) به صورت زیر باشد، مقدار LP که $\Delta T_{min} = 7 \circ {}^{\circ}C$ می توان تولید کرد را درصورتی که بخواهیم مقدار HP تولیدی ماکسیمم شود چقدر است؟ $\Delta^{\circ} \circ C = \Delta T_{min} = 10^{\circ}$ (بخار با دمای ۱۴۰ درجه سانتیگراد) HP (بخار با دمای ۱۴۰ درجه سانتیگراد) (۱۲/۷ (۱

8/X (T 2/9 (T 4/8 (4


T* (°C)	MW
820	o
۳۹0	0/220
180	۶/۸۳
100	۱۲/۷۳
٩۵	۱۳/۰۸
۲۰	10/100
0	18,100

مقدار یوتیلیتی گرم (QH) و سرد (QC)، بهترتیب برای جریانهای گرم و سرد فرایندی زیر چقدر است? $\Delta T_{min} = 7 \circ ^{\circ}C$, $T_{pinch}^{*} = 9 \circ$

Ts(°C)	Tt(°C)	CP(kW/°C)	ΔH(kW)
110	۴o	40	6900
100	90	۳۰	1400
۳۰	110	90	9000
٨٥	190	٢٥	1900

۱۰۹- در شکل زیر، دو موتور حرارتی A و B با راندمان حرارتی یکسان نشان داده می شـود. کـدام مـورد درخصـوص راندمان قانون دوم این دو موتور حرارتی درست است؟

-۱۱۰ از برج تقطیری برای جداسازی مخلوطهای مایع استفاده می شود. اجزای اصلی برج عبارتند از ستون برج، دیگ

- ا۲۵ فرض کنید کشش قیمتی تقاضای بنزین در ایران برابر با ۳۵/۵ باشد، قیمت کنونی بنزین یارانهای برابر با ۱۵٫۵۵۰ ریال و بنزین آزاد ۳۰٫۵۰۵ ریال است. دولت قصد دارد قیمت بنزین یارانهای را به ۲۵٫۵۰۵ ریال و قیمت بنزین آزاد را به ۴۰٫۵۰۵ ریال افزایش دهد. اگر مصرف کنونی روزانه بنزین یارانهای برابر با ۷۰ میلیون لیتر و بنزین آزاد برابر با ۱۰ میلیون لیتر باشد، مقدار تقاضای روزانه کل بنزین پس از افزایش قیمتها حدوداً چند میلیون لیتر خواهد شد؟
 - ۱) ۵٫۵ میلیون لیتر
 - ۲) ۶۵,۷۵ میلیون لیتر
 - ۳) ۶۱٫۵ میلیون لیتر
 - ۴) ۵۷,۲۵ میلیون لیتر
- ۱۱۳– یک خودرو برقی جایگزین یک خودرو با سیستم احتراق داخلی میشود. خودرو برقی در بار پایـه (از سـاعت ۲۴ تـا ساعت ۵ صبح) شارژ میشود. شبکه برق نیز دارای نیروگاههای گازسوز و انرژی خورشیدی است. اگـر بـازده انـرژی خودرو با احتراق داخلی ۲۸٪ و بازده خودرو الکتریکی ۷۰٪ و بازده سیستم فتوولتائیک متصل به شبکه برق ۲۰٪ و نیروگاههای فسیلی ۴۰٪ باشد و تلفات در شبکه انتقال و توزیع برق برابر ۱۰٪ باشد، انتشـار مقـدار گـاز دیاکسـید کربن در حالت استفاده از خودرو الکتریکی نسبتبه خودرو با احتراق داخلی چه میزان خواهد بود؟ (نرخ انتشـار گـاز دیاکسید کربن به ازای واحد انرژی در سوختهای هیدروکربنی یکسان فرض شود.)
 - °/Å ()
 - 0/9 (1
 - 1/1 ("
 - 1/1 (4
 - ۱۱۴– مبنای مدل اقتصادسنجی تقاضای انرژی خانوار، علاوه بر عقلانیت اقتصادی، استفاده از کدام مورد زیر است؟ ۱) توابع تقلیل یافته براساس اطلاعات تاریخی ۲) روشهای آماری براساس اطلاعات موجود
 - ۳) روشهای آماری براساس اطلاعات مقطعی
 - ۴) روشهای آماری براساس اطلاعات مقطعی و سری زمانی
- ۹۱۵ برای توسعه یک نیروگاه ۵ کیلوواتی خورشیدی در کشور و با فرض شرایط تعداد ساعات پیک خورشیدی (PSH)
 ۹۰۰۰ ساعت، با درنظر گرفتن نرخ خرید تضمینی برق خورشیدی ۲۵۰۰ تومان به ازای هر کیلوواتساعت و سرمایه گذاری موردنیاز ۱۶۰ میلیون تومان، دوره برگشت سرمایه پروژه، حدوداً چند سال خواهد بود؟
 ۱) ۶
 - 4 (1
 - ۳ (۳
 - ۴) کمتر از ۱
 - ۱۱۶ کدام مورد، پیشران اصلی در گذار انرژی در جهان است؟ ۱) مقابله با گرمایش جهانی
 - ۳) پایان پذیری سوختهای فسیلی
 ۴) اقتصادی شدن فناوریهای نوین انرژی

حدوداً مصرف چند میلیارد لیتر مازوت و گازوئیل میتوانـد جبرانکننـده نـاترازی ۷۰ درصـدی گـاز در بخـش	-111
نیروگاهی کشور در سه ماهه فصل زمستان باشد؟ (فرض کنید که ظرفیت نیروگاههای حرارتی و گـازی کشـور ۹۰	
گیگاوات است، ضریب ظرفیت متوسط نیروگاهها ۸۰٪ و ضریب در دسترس بودن متوسط نیروگاهها ۷۰٪ باشـد.	
همچنین ارزش حرارتی مازوت و دیزل را ۴۰ مگاژول بر لیتر است. راندمان نیروگاهی در صورت مصرف سـوخت	
مایع را برابر با راندمان نیروگاهی در صورت مصرف گاز طبیعی و معادل ۴۰٪ فرض کنید.)	

71 (1

17 (1

10 ("

- 17 (4
- ۱۱۸ برای تولید ۱۰ میلیارد کیلووات ساعت برق سالانه، از سه فناوری زیر مــی تــوان اســتفاده کــرد. مشخصــات ایــن فناوریها به شرح زیر است:

الف _ خورشيدى:

ضریب ظرفیت: ۲۰٪

هزینه نصب: **۱۰۰۰ دلار بهازای هر کیلووات**

بدون هزينه سوخت

ب _ بادى:

```
ضریب ظرفیت: ۳۳٪
```

```
هزینه نصب: • • ١٢ دلار بهازای هر کیلووات
```

بدون هزينه سوخت

ج _ فسيلى:

```
ضريب ظرفيت: ٨٥٪
```

هزينه نصب: ٥٥ ٧ دلار بهازاي هر كيلووات

هزینه سوخت: ۵ ۰/۵ دلار بهازای هر کیلووات ساعت

هزینه کل (تجهیزات + سوخت) برای تولید این مقدار برق سالانه برای هر فناوری، به تر تیب، از ارزان ترین تا گـران تـرین چگونه خواهد بود؟

۱) بادی _ خورشیدی _ فسیلی _ خورشیدی _ بادی
 ۳) فورشیدی _ بادی _ فسیلی _ بادی _ خورشیدی

۱۱۹ کدام مورد، مهم ترین چالش پیش روی ایران برای دستیابی به یک گذار انرژی موفق به سمت انرژی های تجدید پذیر است؟

 ۱) اتکا به منابع غنی سوختهای فسیلی و سیاستهای حمایتی از آنها
 ۲) نبود منابع مالی و سرمایه گذاری کافی در بخش انرژی های تجدید پذیر
 ۳) ضعف زیرساختهای شبکه توزیع برای ادغام انرژی های تجدید پذیر
 ۳) ضعف زیرساختهای شبکه توزیع برای ادغام انرژی های تجدید پذیر
 ۳) ضعف زیرساختهای شبکه توزیع برای ادغام انرژی های تجدید پذیر
 ۳) ضعف زیرساختهای شبکه توزیع برای ادغام انرژی های تجدید پذیر
 ۳) ضعف زیرساختهای شبکه توزیع برای ادغام انرژی های تجدید پذیر
 ۳) ضعف زیرساختهای شبکه توزیع برای ادغام انرژی های تجدید پذیر
 ۳) ضعف زیرساختهای شبکه توزیع برای ادغام انرژی های تجدید پذیر
 ۳) ضعف زیرساختهای شبکه توزیع برای ادغام انرژی های تجدید پذیر
 ۳) ضعف زیرساختهای شبکه توزیع برای ادغام انرژی های تجدید پذیر
 ۳) مدم تطبیق سیاستهای ملی انرژی با تعهدات بین المللی در کاهش کربن
 ۳) نیروگاه های زمین گرمایی
 ۳) نیروگاه های زمین گرمایی

۳) نیروگاههای برق هستهای (۴

کلید سوالات آزمون دکتری نیمه متمرکز – سال ۱۴۰۴

کد دفترچه				عنوان دفترچه			
۸۹۸Α				دروس اختصاصی			
شماره سوال	گزیتھ صحیح	شمار ه سوال	گزیتھ صحیح	شهار ه سوال	گزیتھ صحیح	شمار ه سوال	گزیتھ محیح
١	1	۳۱	۲	۶١	1	91	۲
۲	۴	۲۳	۴	۶۲	۲	٩٢	٣
٣	۱	щщ	٣	۶۳	1	٩٣	۴
۴	۴	٣۴	۲	۶۴	۱	٩۴	1
۵	٣	۳۵	٣	۶۵	٣	٩۵	ч
۶	ч	۳۶	1	۶ 9	Ч	ዓ۶	۴
٧	ч	٣٧	٣	۶٧	۲	٩٧	٣
٨	٣	٨٣	۲	۶۸	۴	٩٨	1
٩	ч	٣٩	۴	۶۹	٣	99	٣
١٥	1	۴٥	٣	٧٥	ч	100	ч
11	٣	۴١	1	V1	۴	101	1
۱۲	۴	۴۲	۲	۲۷	Ч	104	1
۳۱	ч	۴۳	۴	٧٣	٣	٣٠١	Ч
۱۴	٣	۴۴	1	٧۴	۲	104	٣
۱۵	۱	۴۵	۴	۷۵	1	۵۹۱	۴
15	ч	۴۶	1	۷۶	۴	1 • 5	1
1 V	۱	۴۷	۴	vv	ч	١٠٧	Ψ
۱۸	٣	۴٨	٣	٧٨	٣	١٥٨	1
۱۹	۱	۴٩	۲	٧٩	۴	109	ч
٩٩	۴	۵۰	۲	٨٥	1	110	۳
١٢	٣	۵۱	1	۸۱	ч	111	ч
44	ч	۵۲	٣	٨٨	۴	112	۳
чч	۴	۳۵	۲	٨٣	٣	۳۱۱	٣
۲۴	٣	۵۴	٣	٨۴	1	1114	1
۲۵	۴	۵۵	1	٨۵	۴	116	ч
۲۶	ч	۵۶	۲	٨۶	1	119	1
۲۷	1	۵۷	٣	٨٧	۴	117	ч
۲۸	ч	۵۸	٣	٨٨	۲	11A	۴
۲۹	٣	۵۹	۲	٨٩	ч	119	1
۰۳	1	% 0	۴	٩٥	۳	۱۲۰	٣

سازمان سنجش آموزش كشور